Systematic Literature Review: Metode Forecasting Komoditas Biji Kopi dalam Supply Chain Management
Abstract
Penelitian ini memiki tujuan untuk melakukan identifikasi, evaluasi dan merangkum suatu metode forecasting yang ada dalam manajemen rantai pasok biji kopi. Dengan adanya pendekatan Systematic Literature Review (SLR), analisis dapat dilakukan terhadap 12 jurnal yang dipublikasi pada tahun 2019 - 2024. Hasilnya memperlihatkan bahwa metode statistik, terutama Exponential Smoothing merupakan metode yang paling sering dipakai dan tentunya efektif dalam melakukan prediksi permintaan serta pasokan pada data yang stabil. Namun, efektivitasnya bergantung pada pola musiman dan kualitas. Selain itu, metode forecasting dipengaruhi oleh karakteristik data. Metode seperti Exponential Smoothing, model statistik berbasis Bayesian, dan Machine Learning efektif untuk pola data musiman dan kompleks. Peneliti harus melakukan pertimbangan pada konteks serta karakterisik suatu data untuk melakukan pemilihan pada metode yang sesuai, meminimalkan kelemahan dan mencapai hasil yang optimal. Penelitian ini diharapkan dapat menjadi panduan untuk industri kopi dan akademisi dalam pemahaman tren serta memilih metode forecasting yang efisien.
References
[2] R. Zhou, Y. Wang, M. Jin, J. Mao, and X. Zheng, “Coffee supply chain planning under climate change,” Journal of Integrative Environmental Sciences, vol. 19, no. 1, pp. 1–15, 2022
[3] F. Rubio-Lopez, M. Taniwaki, J. Morris, and E. Garcia-Cela, “Application of Risk Management Metrics for ochratoxin-A control in the coffee chain,” Dec. 01, 2023
[4] Y. Rodriguez-Gallo, H. Cañas, J. Cruz, M. Cardona, and G. Medina-González, “Coffee leaf rust and berry borer management in agroforestry systems: A systematic literature review,” Dec. 01, 2024
[5] H. A. Mahmoud, S. Essam, M. H. Hassan, and A. S. Sobh, “Modeling circular supply chains as an approach for waste management: A systematic review and a conceptual framework,” 2024
[6] F. Muliani and B. Nuri, Forecasting Annual Coffee and Rubber Production in Aceh Using Exponential Smoothing.
[7] L. Kouadio, V. M. Byrareddy, and A. Sawadogo, “Probabilistic yield forecasting of robusta coffee at the farm scale using agroclimatic and remote sensing derived indices 2 3,” 2021.
[8] C. Deina et al., “A methodology for coffee price forecasting based on extreme learning machines,” Information Processing in Agriculture, vol. 9, no. 4, pp. 556–565, Dec. 2022
[9] C. Fatih, “Forecasting Models Based on Fuzzy Logic: An Application on International Coffee Prices,” Econometrics, vol. 26, no. 4, pp. 1–16, 2022
[10] S. Akmal, M. Sayuti, and M. Hasibuan, “Forecasting Model of Arabica Coffee Export Demand With Decomposition Method on CV. Gayo Coffee Oro
[11] F. Tryanda Nosa and D. Kurniasari, “Robusta London Coffee Price Forecasting Analysis Using Recurrent Neural Network-Long Short Term Memory (RNN-LSTM),” vol. 20, no. 2, pp. 30–41, 2023
[12] A. Nadiah, T. Himawan, and H. Tarno, “Forecasting Model of Coffee Berry Borer (Hypothenemus Hampei) in Pasuruan District,” Research Journal of Life Science, vol. 10, no. 1, pp. 13–20, Apr. 2023
[13] T. Benavides, “FORECASTING QUOKKA BREW’S FUTURE COFFEE SALES A Project,” 2023.
[14] R. R. Erlina and R. Azhar, “FORECASTING MODEL OF AGRICULTURE COMMODITY OF VALUE EXPORT OF COFFEE: APPLICATION OF ARIMA MODEL,” Jurnal Teknik Pertanian Lampung, vol. 9, no. 3, pp. 257–263, 2020
[15] D. Q. Phung et al., “Building the ARIMA Model for Forecasting the Production of Vietnam’s Coffee Export,” Journal of Applied Mathematics and Physics, vol. 12, no. 04, pp. 1237–1246, 2024
[16] N. T. Nguyen, V. T. Phan, D. N. Van, T. H. Le, and T. V. Pham, “Forecasting the Coffee Consumption Demand in Vietnam Based on Grey Forecasting Model,” Vietnam Journal of Computer Science, vol. 9, no. 3, pp. 245–259, Aug. 2022
[17] R. D. Rincón, W. Palacios, and H. O. Paipa, “Comparison of statistical forecasting techniques for Colombian coffee demand in South Korea,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2020